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Numerical modeling of two-phase flows in channels of intricate configuration is conducted. Problems of the 

stability of  the proposed  algorithm for  highly subsonic f lows  are studied.  The effect o f  various 
physicomechanical parameters on the flow structure in corrugated channels is considered. 

Introduction. Gas-droplet flows are widely used in atomic-power engineering, chemical engineering, and 

other technological areas for enhancing the processes of heat and mass transfer and separation. Optimum design 

of inertial, centrifugal, and vortex separators and calculation of the process modes in them require information on 

the hydrodynamic parameters of the flow. Therefore, equations of interpenetrating continua with appropriate 

assumptions [1 ] were used as a mathematical model describing gas-droplet flow in these devices. Relying on the 

method of large particles, we propose an algorithm for calculating the parameters of a two-phase (in the general 

case the medium can be multiphase) medium that is based on conversion to new independent variables (x, ~). This 

technique permits conformal mapping of a region in the physical plane of intricate configuration onto a region in 

the computational plane in a shape of a square as a rectangle. 
1. Mathematical Model of Two-Phase Flow in the Variables (x, se). Let us consider a highly subsonic flow 

of a two-phase medium consisting of a compressible carrier gas and monodisperse droplets, in louvers of finite 

length L (see Fig. 1). We present, in dimensionless form, equations and closing relations that describe an unsteady 

two-dimensional flow of a monodisperse two-phase medium within the framework of the model of interpenetrating 

continua: 

OP s vk k 
0--7- + (Ps Vs) = 0 (s = 1, 2),  

Ops Vs 
Ot + vk (Ps Vs ~)  = - -~ ~P + F ,  

2 I~ v '} [ ot + [(Ps Es + '~p/~) Vs I = o ,  (11 
s = l  

OP2e2 + vk k 
0---~ b~ = q '  q = ~nd2 (T 1 - T2) , 

1 2 { l , s = l  
= Vs) a = 3 = Es es + - 2 ( ~ ' ~  ' 7M0' 0~s 2" 

System (1) should be completed with the equations of state of the phases, and here we assume that the 
0 

carrying medium is an ideal gas and the droplets are incompressible (the true density of the droplets is P2 = 1000 

kg/m3), and 

P = (7-- 1)Pel , el = Cvl T1, e2 = c2T2. (2) 
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Fig. 1. Structure of a gas-drople t  flow in corrugated channels  (louvers) (m20 

-- 0.001, d -- 8/~m).  Light solid lines indicate the gas,  dots the droplets ,  and  

heavy solid lines the a channel  contour. 

Dimensionless  pa ramete r s  in Eqs. (1) and  (2) are introduced by the relat ions 

Vs p _p__. e --  E 
 =7o' p= e = - - ,  PO eo E 0 

x t y=  ' 7 = ;  (3) 

(T is the character is t ic  t ime in which a droplet  travels the distance R with the character is t ic  velocity 10. 

For the vector of the friction force between the phases  and  the ra te  of interphasic  heat  t r ans fe r  q we write 

the express ions  

= S t k  " P 2  (~11 - ~ 2 ) ,  

o 2 
P2 Vd 

Stk - 
18/xR ' 

(4) 

o 2 
e cvl] fl(r) P2 Vd r 

q = fl(r) p2 e I -- 2c2 J , 12;tlR 

It should be noted that  two-phase flows with monodisperse  droplets  or particles are really not observed,  

since in a d isperse  med ium there is a lways a droplet  (particle) size distr ibution usually specified in the form of a 

distr ibution function [(r ) ,  for which use is most  f requently made  of the  lognormal  distr ibution law 

- - -  exp - 

where r -- d / 2 ,  r o is the mathemat ica l  expectat ion,  and  In a is the rms deviation of the logari thms of the particle 

radii. Still, in some cases,  for example,  with bubbling of vapor  through a liquid layer,  the rms deviation of the sizes 

of the droplets  carr ied out to the separat ion zone of a nuclear  electric power plant is not grea ter  than  8 - 1 0 %  of a 

some mean value r under  certain conditions [2 ], and a monodisperse  model of a two-phase  cont inuum descr ibes  

the flow of a read  polydisperse  med ium to sufficient accuracy.  Upon enter ing the gas flow, the liquid droplets  

deform, and  for certain relat ionships between the forces of surface tension, viscosity, and  inertia of the droplets  

they can b reak  up into smal ler  ones. Because the splitting of the disperse inclusions fundamenta l ly  affects  the 

in terphase  exchange  in two-phase  media,  in the general case it should be accounted for by introducing appropr ia te  

source te rms into the r igh t -hand  sides of Eqs. ( I ) .  

The  s tudy  [1 ] showed that for this class of flows the splitting commences  when the following condition is 

fulfilled: 
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Wel2 >_ 0.5 Re?2 5 , 

where Wel2 - -P ld l~ l  - ~21 z / y ,  Rel2 = P l d l V l  - 721/k~, and X = 73-10 -3  kg/sec  -2. 

In calculations the maximum droplet  d iameter  was taken to be 100/xm, the flow velocity v - 10 m/ s ec ,  and 

therefore,  Wma x - 10 -4 .  102/10 -1,  and Rel2 - 10 -4 .  10 /10  -5  --- 100. Hence,  Wel2 << 0.SRe?25, and therefore  in 

this problem droplet  splitting can be disregarded.  

To integrate Eqs. (1) and (2), boundary  and initial conditions must be specified. On the left bounda ry  of 

the region from which the gas-droplet  flow issues, in the cross section x = 0 (see Fig. 1), we assigned the condit ion 

of constant  flow velocity, i.e., 

V = 0 ,  

and the conditions H 0 = 0 and S = 0 (H0 and S are the total enthalpy and entropy of the mixture) .  Also, the reduced  

densi ty  and velocity of the phase on this section of the channel  were assumed to be preset.  

On the lateral wails, a nonleakage condition is fulfilled for the gas and an a t tachment  condit ion is fulfilled 

for the droplets,  i.e., the droplets that  reached the channel  walls vanish from the flow. At the channel  outlet ,  the 

condition of pressure constancy in the surrounding space was used for the flow. Analyzing the results of numerous  

calculations revealed that  the specific form of the boundary  condition at the channel  outlet (pressure cons tancy  in 

the surrounding space, determinat ion of the pressure from the Bernoulli equation, etc.) does not have a fundamenta l  

effect on the channel  flow. 

The  parameters  of the undis turbed flow F = 0 and q = 0 in the cross section X = 0 were used as the initial 

data. Integrat ion of system of equations (1) using a f ini te-difference method in the curvilinear region 

Q{O < x <  L / R ,  G(x )  < y < -  F ( x ) }  

(G(x) and F(x) are  the equations of the lower and upper  surfaces of the louvers) involves the need  to replace the 

continuous region Q by a grid region, which, however, gives rise to irregular  nodes (or calculation cells) nea r  the 

region boundary .  Therefore ,  it is reasonable  to introduce new variables ~ = ~(x, y) and ~/= t/(x, y) in which the 

curvi l inear  region becomes rec tangular .  T h e  studies [3, 4 ] showed that  if in this case the  Jacobian of the 

t ransformation I = D(~, ~I)/D(x, y) exists and does not vanish at any  point of the region, the divergent form of 

Eqs. (1) is retained.  Upon substi tution of the independent  variable ~ = [y - G(x) ]] [F(x) -- G(x) ] the curvil inear  

region Q converts to the rectangular  region N (0 < x < 1, 0 -_- ~ < 1). Then ,  in the variables (x, ~) sys tem of Eqs. 

(1) takes the form 

op op..  op,v, 
0-7 +---g~x + ~ - ~  - =  

a--i- + ox + ~ - , ~  - ~ ~ + ( d  + r  - ~ + ( -  I )  ~ v ~,  

0p/  0p,+  + 0p, v, 
0---5- + 0 ~  

= - ~ - - - - ~ -  + ( -  1 ) ~ / ,  

(5) 

0 sEs+-dp v s a s E s + - ~ p  U s 
2 

aPsEs + ea~ = 0 
X L-T+ ox s = l  

OPse2 
Ot 

- - + - -  OP2e2v~ 
Ox 

0/9 2e2U2 p 2e2f~2 
+ ~ - - - ~ - - = q -  ~--TU-' 
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X 
e ( x )  = F ( x )  - G ( x )  , U s = ~ - v s (G '  + ~e ' )  , 

x ,  
+ v s ( G  + ~e ' )  - for an axisymmetric flow, 

= ( G ' +  ~e') - for a plane flow. 

2. Eulerian Step of the Method of Large Particles for M 0 << I. We p r e s e n t  the equations describing the gas 

flow at the Eulerian step in the following form: 

Ou 1 0 p  (G' + ~e') Op 
Ot - a p  Ox + Gap 0-~'  

ov 
at - a e p  ' (6) 

Op (7 - 1) r|Oeu 0 (v - ~e,u) I'l 
O t - e P [ - f f  xx + O ~ J " 

In system (6), the terms that take account of the axial symmetry, convective transfer, and interphase 

interaction are disregarded. The considered integration region is covered with a fixed calculation grid with 

rectangular cells of sides Ax and A~. We now write system of equations (6) in difference form by the following 

implicit scheme: 

n+l n X n . n+l _ n+ (GI" + n ei~]) " n+l n+l 
Ui,j = Ui,j - tPi+ l 12 , j  P i -  1 / 2, j)  4- tPi , j+ l 12 -- P i , j -  1 / 2)  , (7) 

aPi , j  e i a Pi , j  

n + l  n X . n + l  n + l  
-- I, Pi , j+ 112 -- P i , j -  1 / 2) (8) Vi,j = Vi,j n 

a e i Pi , j  

n + l  
n + l  n " ( Y -  l ) zP i , j "  . n + l  n + l  n + l  n + l  

Pi,j  = Pi, j  -- ei [el ( U i + l / 2 , j  -- u i - 1 / 2 , j )  + v i , j + l / 2  -- v i , j - 1 / 2  

_ ( e i ~ j + , / 2  .#. GI ) ui,j +l/2n+l "t- (e ;~ j - ' /2  "1- G;) ui,j_ll2i,n+l (9) 

where Z = A t / A x .  

With the aid of Eqs. (8)-(9) we eliminate the quatities of u n+l  v n+l  id and i,j in the (n+ l ) - th  time step from 

Eq. (7). We introduce the notation 

Z i ~- 

2 n + l  
Z ( ~ -  1) Pi, i 

a e  i 

B i 

2 n + l  
Z (Y-  1) Pi,j 

r i 

Ci  : 1 + A i  + B i  + 

2 
Z 

e i 1 

1l 

P i - l l 2 , j  4 

ei 1 
12 

P i + l / 2 , y  4 

(y - 1 )p in f  ' 
2 

a c  

( ' :tl 
 i s+ll2 + c l  1,'2 + c 

n + n ' 
P i , j + l / 2  P i , j - 1 / 2  

P i d + l / 2  P i d - 1 / 2  

1 +  (4)  ; + _ . 
n 

P i , j + l / 2  P i , j -  1 / 2  
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, (7 ' 

* X 2 (7 -- l ) p n ; l  1 -I- @i)2 ~2+1/2 __ (G; -I- ~i~i) c i+ , /2  

Aj = aei eiPin, j+l 12 4 i+112Pi+l 12,j 

. X 2 (y - 1) pin, f 1 .1 + (ei.___~) #L+l/2 + 

n rL 

Bj = ctei e i P j - l / 2  e i + l / 2 P i + l / 2  d 

2 n+l 
X ( 7 -  l)  Pi,j * n * n + l  * n+l 

Ogi = -- Pi,j -- A / P i , j - I  - B/ Pi,j+l + 4a e i 

Ci-1/2 

e i - 1 / 2 P i +  l /2 , j )  

,,)l - -  H 

~i-1 /2  P i - 1 / 2 , j ]  

: n+l 
(Pi+ 1 ,j+ 1 - -  

n+l 
- -  Pi+l , j - l )  

t s 

ei ( e i + l / Z ~ j  + G i+ i /2 )  

e i + l / 2 P i + l / 2 , j  

. n+ 1 n+ 1 
+ (Pi+l,j+l -- P i - l , j - 1 )  

ei@;_1/2r  i -- GI_l /2)  . n+l n+l 
-- (Pi - l , j+l  -- P i - l , j - l )  

Then,  Eq. (7) is written as 

?1. 

e i - l / 2 P i - 1 / 2 , j  

( I e i ~ i + l / 2  q- G; 

P i j - 1 / 2  

. . + l  . + ,  . + G ;  
- -  ( P i + l , / - 1  - -  P i - l , / - 1 )  

P i , ] - l / 2  

n+l rt+] rt+l (10) 
Ai Pi -  l,j - Ci Pi,j + Bi Pi+ 1 ,j = q)i 

for longitudinal factorization and as 

* n + l  C ;  n + l  * n + l  * * * 
A / P i j - 1  - Pi j  + Bj Pid+l = cl~ , C/ = Ci ,  % = ~-~. (11) 

for transverse factorization. Since the factorization coefficients in Eqs. (10) and (11) are functions of n+l Pid ' the 
latter were solved using an iteration with respect to pn+l i,] 

In each iteration, the values of the quantities p~.+l entering into the expressions for A i, Bi, A j ,  B) ,  Ci, 

C;, ~i,  and ~ ;  were replaced by the corresponding values taken from the preceding iteration. After  solving system 

(7)-(9) to the prescribed accuracy the pressure and velocities of the carrying phase are de termined  in the Euler ian 

step. All parameters  of the disperse phase in the Eulerian step do not vary with time. 

The  Lagrangian and final steps are carried out in accordance with the general  scheme of the method of 
large particles [5]. 

3. Stability Analysis of the Modified Method of Large Particles in the Variables (x, ~). We consider  the 

problem of the stability of the proposed difference scheme. We will use results [5, 6 ] based on an analysis  of the 

parabolic form of the first differential approximation of the scheme. 

Since there is no itrinsic pressure in the particle medium, the equations of motion of the  disperse phase 

are integrated by an explicit scheme of the method of large particles [5 ]. The  scheme is well-known in the l i terature,  

and therefore  the pert inent  equations in the initial system of equations (1) are not considered in this section. Since 

the terms that take into account the intensi ty of the interphase force and thermal  interaction, general ly  speaking, 

do not have any effect on the stability of the numerical scheme, the equations of the final step for the gas phase 

are taken without regard for the forces of interphase interaction. Without limiting the general i ty of the investigation 

we suppose that the flow is plane. Thus ,  with a view to the above remarks the equations of the final step for the 

gas have the form 

n+l 
Pi,j 

, ,  1 Az r , ,  

= P i,j + "2 ~ X  l p i -  1 ,j ('Ui- 1 ,j 
g/ N 

"F "Ui,j) -- Pi,j ('~i,j 4- "i,j) "I- 

+ -~ [p~,j_~ (v~,/_~ +u~,/) - p~,j (u~, /+u, , /+~)l l  - p ~ ' j  u ~ ' i '  
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n+l  n+l  n -- AI { n U"i- ( U i - I , j  +'Ui j )  -- PAY ui,j = Pi,] tti,j + ~ Pi - l , i  ld 

--Pi, j  ('~i,j +/'/i+l,j) Ui,j + ~i [/9i'j-I Ui'j-I (Ui,j-1 +lJi,j) - 

n ~ t N N g -- Pi,j ui,j (~-ft',j +Uid+l) ] -- Pi,j Ui,j Ui,j AI , 

n + l  n + l  n - At { - (u'i- + 
P~,s viJ = Pi,s v i j +  YAYx (P~- ~,s ~'i-~,s ~,s "d~,) - 

-- Pi,j Vi,j (~',j + Ui+ 1,j) + ei [10i'j- 1 Vi,j-1 (IJi,j-1 + Lli,j) - 

- p ; j , , ; , s  (~'~,j + ~ , , j + , )  l - p ; j  ,,,,j ~,,~ At, 

n+ l +1 n At {pn 
P~J C i  = P~,s ~:ij + - ~  ~_~,s e~_~,s (~,._~j + ~,.) - 

n - -  1 n E i , j -  ( L i i , j -  I + ~ i i , j )  - - -  Pi, j  Ei , j  ('ui,] + ~'+ 1,? + ~i ~Oi'j- 1 1 

-p/jT~;j(~i,s + ~,.j+~)l - p i j e i j  VijAt, U;,s ~ij'i/~. 

02) 

It was assumed here that u~-l,y + u'~,i > O, ~i,y-I + ~Ji,] > 0, etc. Analysis of the stability for cells in which the 
inequality sign is reversed is performed in a similar fashion. Substituting relations (7)-(9) for if, ~,, and ~-into Eqs. 
(12) of the final step and representing the parabolic form of the first differential approximation of difference scheme 
(12) as 

L OO = A O2i + B 02i + c 02i + as, 
Ox 2 O~ 2 OxO~ 

we obtain expressions for the diagonal elements of the matrices A, B, and C 

APl = ~- /,tAx + At 
ape 

/~1 ,  = .  ~l Uax+__ ~At[e'~Axop+L ap Ox (1 + (e')2 ~2) P - - ~ ]  } ' c t p  

1 (  s'~eP/ At 41  = - ~  , , v +  ~py , 

A22 = -~ p u A x  + At - pu  2 (2y 2 - 57 - 6) , 

B?? = p U A x  + T + [e'~ (U - 2ue'~) - 

- (7  - 1) (u  (1 + (e')2~ 2) - Ue'~)lpu] , (13) 
3 
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f At 
t + (5 - 2r) + u + 

u 

Cz2 = ' 7  - - - 7 -  
t 

+ ( } , -  1) ( U -  u) + ( } , -  l) (2 7 -  1) ( V -  e'~u) 

A3a =-~  u A x -  A/p [u 2 +  (},-- 1) v 2] , 

,} 

B a 3  = 2 p v / , x  - 7 - - p v  2 + v (}, - 1) - 1) , 

v Atpv 
C33=- e I 2 U + u ( 4 - 7 ) + 3 v e ' ~ ( } , -  1) + u ( } , -  1 ) ( 2 7 -  1 ) ] ,  

A 4 4 = P  + A t  [(y -- 1) E + (},2 + }, - 1) u 21 , 

B4 4 = ~ ~ + -'7"- [(},2 + }, _ 1) U 2 + (1 + (e') 2 ~2) E ]  , 

E 2pVu},2At 
C44 = e 

In expressions (13), the superscript of the coefficients on the lef t -hand sides indicates the variable to which the 

coefficient relates. 

In conformity with results of [5 ], the stability criteria for the presented  modification of the scheme of the 

method of large particles are conditions of positiveness for the diagonal elements of the matrices A and  B. An 

important  difference of the expressions for the coefficients Akk and Bkk in Eqs. (13) from similar expressions for 

these coefficients obtained with an explicit scheme of the Eulerian step of the method of large particles lies in the 

following. Terms of the type p / a  enter  the r ight-hand sides of Akk and Bkk with a "plus" sign in the case of an 

implicit scheme and with a "minus" sign in the case of an explicit scheme. At low subsonic velocities, when 

a << 1, these terms make a major contribution to the value on the r ight-hand sides of the equations for Akk and  

Bkk. This circumstance weakens significantly the constraints on the value of the ratios A t / A x  for a << 1 that  are  

stipulated by the requirement  of stability of the difference scheme. When a >> 1, the contr ibut ion of terms of the 

type p / a  becomes of the same order  of magnitude as p~2. In this case the stability conditions for an implicit scheme 

become practically the same as for an explicit scheme, which renders  the use of implicit schemes for large a 

unreasonable.  

It should be noted that,  for small a ,  terms of the type p / a  make the r ight -hand sides of the coefficients 

Akk and Bkk positive for any  A t / A x .  Nonetheless,  as the authors of [4 ] showed, the presence of an i terat ion process 

in the integration of the equations in the Eulerian step leads to constraints on A t / A x .  Th e  practice of calculations 

shows that an implicit scheme is stable for A t / A x  = 0.1 when a > 0.001. 

To analyze the accuracy of the results obtained we investigated the effect of the scheme viscosity on the 

flow structure in a channel  by varying the number  of cells of the calculation region per unit length. In all calculations 

the parameters  differed by no more than 3-5Yo.  

Below we present  some results calculated using the devised technique for gas-droplet  flows in corrugated 

channels for which the equations of the lower and upper boundaries had the form 

1 / 6 ,  0 < x <  1 /3  
}'low = 1 / 6 ,  [ s i n n ( 3 x - 1 ) / 2 + l l ,  1 / 3 < x _ <  1, 

1 / 6 ,  x > l  

Yup = Ylow + 1 / 3 .  
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Fig. 2. Gas and droplet streamlines in louvers for various values of m20, d: 

1) d = 10/~m, 2) 20, 3) 80. 

As the carr ier  phase we considered air with p00 = 1.21 kg /m 3 and/x 0 = 1.75.10 -3  kg / ( see ,  m), and as the disperse 

phase, water droplets with p~  0 = 1000 kg /m  3. The  spacing between plates in the packet of louvers was R = 10 - l  

m. Figure 1 gives gas and droplet streamlines along the direction of the flow in corrugated channels with a different  

amplitude of the generatr ix of the lateral walls of the louvers. The  figure shows that an increase in .4 gives rise to 

zones of re turn  circulatory gas flow, these zones being larger the more distant they are from the inlet cross section. 

Apart from reducing the droplet separation on the channel  walls, these zones increase the drag of a cleaning unit. 

Calculations indicate that, for a specified degree of cleaning, the drag is minimum for louvers with A / R  -~ 1/2.  

Figure 2 presents  gas and droplet streamlines for various values of the mass content of water  droplets at the channel  

inlet m20 and their  diameter  d. Calculations showed that in all flow modes the droplet  streamlines for d >__ 80/xm 

are virtually identical. As d decreases the flow pattern begins to change. At large m20 (rn20 > 1), s tar t ing with d 

= 20/xm and  less the droplets residing at the channel  center  do not deposit  on the louver walls but  instead are  

carried out of them by the gas flow. With decreasing rn20 the deposition coefficient of the droplets increases for d 

= 20/~m, and when m20 < 0.1, all droplets of this d iameter  deposit on the lateral walls of the channel.  A fur ther  

decrease in d causes the flow structure to change at large m20. Thus,  for example,  at m20 = I and d = 10/xm, due 

to the intensity of interphase interaction the flow is rectified, and zones of re turn circulatory gas flow form in 

bottom regions of the channel,  these zones being larger the more distant  they are from the inlet cross section of 

the channel.  Figure 2 shows that at any values of m20 droplets with d _< 10/~m praciically do not deposit  on the 

channel  walls, which is in line with experimental  data [7 ]. 

Figure 3 plots the efficiency of the louvers ~] vs the Stokes number.  The  figure shows that at a low moisture 

content (rn20 _< 5%)  it is possible to obtain a high degree of cleaning (r/ ~ 9?%)  for louvers with . 4 /R  ~- 0.5. A 

rise in m20 sharply decreases ~/, which necessitates an increase in A / R ,  and this complicates the flow s t ructure  

significantly, icreases the drag of the louvers, and noticeably hinders  numerical  realization of system of equations 

(1). Obviously, in this case in the Eulerian step of the method of large particles it is necessary to employ a 
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Fig. 3. Cleaning efficiency for a gas-droplet  flow in louvers: 1) m20 = 1, 2) 

Stk -- 0.005 (d = 80/~m).  

Fig. 4. Gas  and  droplet  s t reamlines  for a circular segment  with an internal  

disperse flow (M0 = 0.08, Stk = 6.4, rn20 = 0.001). 
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Fig. 5. Dis t r ibut ion of the gas velocities and  the mass  concentra t ions  of 

droplets along the bot tom (~ = 0) and  top (~ = I) surfaces of the channel .  

Fig. 6. Distr ibution of the concentrat ion of droplets in various cross sections 

of a channel:  1) x / R  = 1, 2) 2, 3) 3. 

t ime-implicit  numerical  scheme for calculating not only the pressure  field but also the velocity fields of the car r ie r  

phase.  

Figure 4 shows s t reamlines  of the carr ier  phase and the droplets in an ax i symmet r i c  channel  with the 

generatr ices  of its lateral surface consisting of two parallel s traight  lines and  circular arcs. At the channel  inlet (x 

-- 0) ~ -- ~ -- 0. It is clear from the figure that,  for the given Stk number ,  droplets  whose radius  of admiss ion  in 

the initial cross section varied from 0 to 1/2  completely fall on the lower circular arc of the lateral  surface  of the 

channel.  Figure 5 indicates that  the distribution of v I along the line ~ -- 0 has a profile that  is character is t ic  of tha t  

observed for a sphere  in a "pure" (without particles) gas. Ahead of and  behind the sphere,  ~ has the m i n i m u m  

value, and  on its rear  part ,  the maximum.  On the line ~ = 1 at the points of flow turn ( x / R  = 1.3) v~ a t ta ins  a 

max imum,  and in the bot tom region ( x / R  = 2), a minimum. Analysis  of the densi ty  distr ibution of droplets  reveals 

that the concentrat ion is m ax i m um  on the rear  part  of the circular arc of the line ~ = 0 in the vicinity of the point 

x / R  = 2. It can also be noted that  the droplets practically do not separa te  out on the bot tom part  of the upper  

circular arc. Figure 6 shows the concentrat ion distribution of the droplets in various channel  cross sections. It is of 

interest  to note that in the cross section x / R  = 3 it has a nonmonotonic  character .  This is associated with the fact 

that with a flow over the lower circular arc, due to interaction with the gas the vertical velocity componen t  
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increases markedly for droplets whose radius of escape from the initial cross section is larger than 0.5, which causes 
the droplet streamlines in the cross section x / R  = 3 to converge. 

The computational runs conducted for various configurations of channels and tubes revealed that the 
expounded modification of the difference scheme of the method of large particles allows numerical modeling of 
multiphase flows over a wide range of governing parameters. Here, as test calculations indicate, fairly high accuracy 

of the results (of the order of 1 - 3 % )  is attained. 

N O T A T I O N  

x, spatial coordinate; t, time; R, channel width; .4, amplitude of the generatrix of the louvers; L, channel 

length; d, droplet diameter; rn, mass concentration of droplets; p, density; p, gas pressure; T, temperature; E, total 

energy; e, internal energy; v, velocity vector; v x and v y, velocity components along the coordinate axes; u and v, 

velocity components of the gas in the Eulerian step; 7, adiabatic exponent of the gas; c 2 and %1, specific heat of 
the droplets and the gas (at constant volume); ,~, thermal conductivity;/~, dynamic viscosity; 2], surface tension; 

M, Mach number; Stk, Stokes number; We, Weber number; Rel2, Reynolds number of the relative flow over a 
droplet; A, B, and C, matrices of the coefficients of the approximation viscosity; Ap terms not containing second 

derivatives of the variable f; At, temporal integration step; Ax, spatial integration step. Superscripts and subscripts: 

k, summation over the coordinate axes; s, phase number; n, number of the time layer; i and j, centers of cells of 

the calculation region; 0, value of the parameter in the undisturbed flow. 
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